1. The product moment correlation coefficient is denoted by r and Spearman's rank correlation coefficient is denoted by r_{s}.
(a) Sketch separate scatter diagrams, with five points on each diagram, to show
(i) $r=1$,
(ii) $\quad r_{s}=-1$ but $r>-1$.

Two judges rank seven collie dogs in a competition. The collie dogs are labelled A to G and the rankings are as follows

Rank	1	2	3	4	5	6	7
Judge 1	A	C	D	B	E	F	G
Judge 2	A	B	D	C	E	G	F

(b) (i) Calculate Spearman's rank correlation coefficient for these data.
(ii) Stating your hypotheses clearly, test, at the 5\% level of significance, whether or not the judges are generally in agreement.
2. Over a period of time, researchers took 10 blood samples from one patient with a blood disease. For each sample, they measured the levels of serum magnesium, $s \mathrm{mg} / \mathrm{dl}$, in the blood and the corresponding level of the disease protein, $d \mathrm{mg} / \mathrm{dl}$. The results are shown in the table.

s	1.2	1.9	3.2	3.9	2.5	4.5	5.7	4.0	1.1	5.9
d	3.8	7.0	11.0	12.0	9.0	12.0	13.5	12.2	2.0	13.9

[Use $\sum s^{2}=141.51, \quad \sum d^{2}=1081.74$ and $\sum s d=386.32$]
(a) Draw a scatter diagram to represent these data.
(b) State what is measured by the product moment correlation coefficient.
(c) Calculate $S_{s s}, S_{d d}$ and $S_{s d}$.
(d) Calculate the value of the product moment correlation coefficient r between s and d.
(e) Stating your hypotheses clearly, test, at the 1% significance level, whether or not the correlation coefficient is greater than zero.
(f) With reference to your scatter diagram, comment on your result in part (e).

1. (a) (i)

(ii)

(i) B 1
(ii) B 1 B 1
(i) $\quad 1^{\text {st }} \mathrm{B} 1$ for 5 or more points on a straight line of positive gradient
(ii) $\quad 2^{\text {nd }} \mathrm{B} 1$ for 4 or more points satisfying $-1<r<0$
$3^{\text {rd }} \mathrm{B} 1$ for 5 or more points of decreasing ranks not on a straight line
(b) (i)

(i)
:---:
Rank (Judge 1)
Rank (Judge 2)
d^{2}

$\sum d^{2}=10$
M1A1
$r_{s}=1-\frac{6 \times 10}{7 \times(49-1)}=1-\frac{5}{28}=\frac{23}{28}$ or awrt $\mathbf{0 . 8 2 1}$
M1A1
6
$1^{\text {st }} \mathrm{M} 1$ for attempting to rank one of the judges (at least 2 correct rankings)
$2^{\text {nd }} \mathrm{M} 1$ for ranking both (may be reversed) (at least 2 correct rankings)
$3^{\text {rd }}$ M1 for attempting d^{2}.
$1^{\text {st }} \mathrm{A} 1$ for $\sum d^{2}=10$
$4^{\text {th }}$ M1 for correct use of the r_{s} formula
(ii) $\mathrm{H}_{0}: \rho=0 \quad \mathrm{H}_{1}: \rho>0$ (Allow $\left.\rho_{S}\right)\left(\mathrm{H}_{1}: \rho \neq 0\right.$ scores B0) B1, B1
$r_{s} 5 \%$ one tail critical value is $\mathbf{0 . 7 1 4 3}$
B1
Significant result or reject null hypothesis
M1
There is evidence of a (positive) correlation between the judges or the judges agree

A1ft
$3^{\text {rd }} \mathrm{B} 1$ for the correct critical value - depends upon their
$\mathrm{H}_{1}: \rho>0$ needs 0.7143, $\rho \neq 0,0.7857$
The H_{1} may be in words so B 0 B 1 is possible.
If no H_{1} award for 0.7143 only.
$5^{\text {th }}$ M1 for a correct statement relating their r_{s} and their cv
(may be implied by correct comment)
$3^{\text {rd }}$ A1ftfollow through their r_{s} and their cv.
Comment in context. Must mention judges.
Don't insist on "positive" and condone it if they are using $\rho \neq 0$.
2. (a) \quad NB No graph paper $\Rightarrow 0 / 3$

(b) Linear association between s and d

B1 1

(c) $S_{s s}=141.51-\frac{33.9^{2}}{10}=\underline{26.589} ; S_{d d}=\underline{152.444} ; S_{s d}=\underline{59.524} \quad$ B1; B1; B1 $\quad 3$
 $\begin{array}{rlr}\text { (d) } \begin{array}{rlr}r & =\frac{59.524}{\sqrt{152.444 \times 26.589}} & \text { M1 } \\ & =\underline{0.93494 \ldots} & \text { A1 } 2\end{array} \text { awrt } 0.935 & \end{array}$

$\begin{array}{ll}\text { (e) } & \begin{array}{ll}\mathrm{H}_{0}: \rho=0 ; \mathrm{H}_{1}: \rho>0 & \text { B1 } \\ \text { Critical value at } 1 \%=0.7155 & \text { B1 } \\ \text { Reject } \mathrm{H}_{0} ; \text { levels of serum \& disease are positively correlated } & \text { B1 }\end{array} \\ & 3\end{array}$
(f) Linear correlation significant but scatter diagram looks non-linear. B1 1

1. The majority of candidates could draw a correct diagram for $r=1$ but far fewer managed to do so for (a)(ii), a set of points lying on a line of negative gradient was a common error. In part (b) the ranking caused some to stumble and a value of 4 for $\sum d^{2}$ was fairly common but most could use the formula for r_{s} correctly. The hypotheses in part (c) were sometimes given in words or in terms of r_{s} rather than ρ and a number of candidates used a two-tailed test. The appropriate critical value was usually given and the conclusions were nearly always correct and in context.
2. The scatter diagram was usually well drawn but the obvious curve in the data was rarely commented on in the final part. Few candidates knew what was measured by the product moment correlation coefficient. The numerical parts of the question and the significance test were well answered.
